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Basic concept

1. Probe

• Investigates what task the given representation model is

suitable for.

• Specifically, the goal is to understand on what task the

pre-trained representation model has been trained.

• Through this, we enhance understanding of the specific tasks

the model can perform and grasp the characteristics of the

model.
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Basic concept(Continued)

2. Uncertainty

• Aleatoric uncertainty: Irreducible uncertainty induced by noisy

data.

• Epistemic uncertainty: Reducible uncertainty induced by lack

of knowledge.

• Note: High confident does not mean low uncertainty.
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Gaussain Process Probes(GPP)

• GPP expand existing linear probing method by using gaussian

process.

• It does not require access to training data, gradients, or the

architecture of pre-trained representation model.

(Note: This method is applied to pre-trained model.)

• It probe a model’s representations of concepts and measure

both epistemic uncertainty, aleatory uncertainty of probing.

• There is no need for learning this; it only requires tuning the

hyperparameters based on prior knowledge or experiment.
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Background: Notations for GPP

• X : Input space(ex: Image space)

• ϕ : X → Rd : Given pre-trained model.

• x ∈ X : Input of model.

• a = ϕ(x) ∈ Rd : Vector representation of given input.

• D = {(ϕ (xi ) , yi )}Ni=1 , xi ∈ X , yi ∈ {0, 1}: Given observations.

• Q = {(ϕ(x ′1), y ′1), · · · , (ϕ(x ′M), y ′M)}: Query set.

• g ∼ G(θ): Classifier following Beta gaussian process.

• θ = (µ, k): Parameter for the Beta gaussian process.
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Background: Beta Gaussian Process

Definition

Random element g : Rd → [0, 1] follow Beta Gaussian Process if

g =
1

1 + e−f
, where f = fα − fβ, and

fα ∼ GP(µ, k), fβ ∼ GP(µ, k), fα ⊥⊥ fβ.

Simply we denote g follow Beta GP as g ∼ G(θ), where
θ = (µ, k).

Note that µ, k are mean and kernel functions used to define

gaussian process.

7



Adapting Beta GPs for GPP

• Let g ∼ G(θ) where µ(a) = log(ϵ)− v
2 and,

k
(
a, a′

)
= v

a⊤a′ + 1

(∥a∥2 + 1)
1
2

(
∥a′∥2 + 1

) 1
2

, where v = log

(
1

ϵ
+ 1

)

for all a, a′ ∈ Rd be the prior distribution of classifier.

• Note: ϵ > 0 is the hyperparameter.

• Now, assume that y |g , a ∼ bernoulli(g(a)). From this we can

obtain posterior distribution of classifier when

D = {(ϕ (xi ) , yi )}Ni=1 is given.

• Posterior distribution g |D ∼ G(θD) can be obtained as closed

form.(See Appendix)
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Probing and Uncertainty measures

• We define probing and uncertainty measures using the

posterior prediction g(a) where g |D ∼ G(θD),∀ a ∈ Rd .

• Practically, we obtain posterior using observation D and probe

the query set Q.
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Probing and Uncertainty measures(Continued)

• Judged probability := E[g(a)] which is the expected

probability that the label of input is positive.

• Aleatoric := H[y |g(a)], the expected entropy of the

conditional distribution p(y |g(a)). Higher aleatoric
corresponds to more noisy in the label of a.

• Epistemic := −H[g(a)], the negative entropy of the

distribution of g(a). High epistemic means that we are “highly

confident” about the underlying probability.
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Probing and Uncertainty measures(Continued)

Figure 1: How epistemic, judged probability and aleatoric of GPP

changes as more observations are given.
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Experiment

Figure 2: Number over observations versus AUROC curve. M1 and M3

are trained on color-related tasks, M2 is trained on geometry-related

task. And, P1 is color-related task and P2 is geometry-related task.
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Suggestions for Future Research

• Use hyperparameter ϵ means for given a ∈ Rd ,

g(a) ∼ beta(ϵ, ϵ) under given mean and kernel function.

• In original beta gaussian distribution, parameters of g(a)

depend on a and they don’t necessarily have to be the same

value.

• And the tuning process of hyperparameter relies on the

researcher.

⇒ Can’t we learn the parameters through the observation?
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Appendix: Posterior inference

• Without loss of generality, we write observations as a union of

a dataset ( of size n ) with the positive labels only and a

dataset (of size N − n ) with negative labels only, i.e.,

D = {(ai , yi )}Ni=1 = D+ ∪ D−where D+ = {(ai , yi )}ni=1 and

D− = {(ai , yi )}Ni=n+1.

• For convenience, we use the following short-hand notation:

v ′ = log

(
1

ϵ+ s
+ 1

)
, v ′′ = log

(
1

ϵ
+ 1

)
,

y ′ = log(ϵ+ s)− v ′

2
, y ′′ = log(ϵ)− v ′′

2
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Appendix: Posterior inference(Continued)

• Let

k(a, a) = [k (ai , a)]
N
i=1 ∈ R1,

k
(
a, a′

)
=

[
k
(
ai , a

′)]N
i=1

∈ RN×1,

µ(a) = [µ (ai )]
|D|
i=1 ∈ RN×1, K = [k (ai , aj)]

N
i=1,j=1 ∈ RN

for any given a, a′ ∈ Rd and

yα =

[
y ′1n

y ′′1N−n

]
∈ RN×1,

Kα = K +

[
v ′In 0

0 v ′′IN−n

]
∈ RN .
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Appendix: Posterior inference(Continued)

• yβ,Kβ are obtained by exchange the location of prime and

double prime in yα,Kα.

• f |D ∼ GP(µD , kD) is obtained from above notation and

functions. Its mean and kernel functions are following,

µD(a) = k(a, a)
(
K−1
α (yα − µ(a))− K−1

β

(
yβ − µ(a)

))
,

kD
(
a, a′

)
= 2k

(
a, a′

)
− k(a, a)

(
K−1
α + K−1

β

)
k
(
a, a′

)
for any given a, a′ ∈ Rd .

• The posterior distribution g |D ∼ G(θD) is obtained by

g = 1
1+e−f where f |D ∼ GP(µD , kD).
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